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Abstract. The reactive intermediate that is produced both (i) via reaction of 8-(dibromomethylene)-
pentacyclo[5.4.0.02:6.03.10,05.9lundecane (6) with n-BuLi-THF and (ii) via the corresponding reaction of
pentacyclo[5.4.0.026.03:10.05.9undecan-8-one (11) with diethyl diazomethylphosphonate (DAMP) has
been shown to be vinylidenecarbene 7a rather than the corresponding cycloalkyne, 7b.

Bromomethylene- and dibromomethylenecycloalkanes have been widely employed as precursors to novel
unsaturated carbenes and cycloalkynes.! Interestingly, a—elimination of Br from dibromomethylenecyclobutane
(1, X = Y = Br, n =3) results exclusively in formation of cyclopentyne; the putative vinylidenecarbene
intermediate, 2, cannot be trapped. When the elimination reaction is performed in the presence of an alkene, [2 +
2] cycloaddition occurs with concomitant formation of a substituted cyclobutene.! However, the situation appears
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to be different for the case of 1 (n = 4). Thus, when bromomethylenecyclopentane (4) is heated with strong base
in the presence of cyclohexene, cycloaddition of the corresponding intermediate vinylidenecarbene (2, n = 4) to
the cyclohexene carbon-carbon double bond occurs, thereby affording 5 in low yield (Scheme 2).2
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Results and Discussion. In the present study, we have generated a reactive intermediate in two ways.
First, the reaction of 8-(dibromomethylene)pentacyclo[5.4.0.02-:6.03.10,05.9Jundecane (6, Scheme 3) with -
BuLi-THF was performed at low temperature, and the reactive intermediate thereby produced was trapped in situ
by cyclohexene. The resulting cycloadduct, 8, subsequently was allowed to react with dichlorocarbene, and the
structure of the resulting product, 10, was established via application of X-ray crystallographic methods.3 Simi-
larly, the corresponding reaction of pentacyclo[5.4.0.02:6.03.10,05.9Jundecan-8-one (11)4 with diethyl diazo-
methylphosphonate (DAMP)1¢.5 produced 8 in 30% yield. These results suggest (i) that the same reactive
intermediate was produced in both reactions and (ii) that this species is, in fact, vinylidenecarbene 7a and not the
corresponding cycloalkyne, 7b.

Scheme 3
a-BuLi, THF
 T8Cw00°C
Br O CHCY;, KOH
6 i —_— ———
transfer
DAMP, THF c: H Cl H
—_ ] 7 8 10
.78 °C
0  w+25°C
n 'm“
—
(trap) H
H
1) 9 (not
observed)

It should be noted that vinylidenecarbene 7a is unusual in that it contains diastereotopically differentiated
n—faces. Of particular interest is the fact that cycloadduct 8 results via approach of cyclohexene upon the more
highly sterically congested endo face of the n—system in 7a (see Scheme 4). The fact that the major product, 8,
presumably formed via cycloaddition of vinylidenecarbene 7a to the carbon-carbon double bond in cyclohexene,
results via prefential approach of the cyclohexene ring upon the endo face of the carbene is somewhat surprising.
The reasons for this observed stereopreference are not clear at present.

Results of Quantum Mechanical Calculations. We have performed semiempirical molecular
orbital (AM1) and also ab initio calculations [HF/3-21(G*) and HF/6-31(G*)] for the rearrangement of
vinylidenecarbene 7a to the corresponding cyclohexyne (7b).6 The results of the AM1 calculations indicate that
vinylidenecarbene 7a is preferred thermodynamically by 6.6 kcal-mol-! vis-a-vis 7b (see Table 1). Two transition
states, TS-1 and TS-2 (Scheme S) were also considered explicitly by using the AM1 Hamiltonian. It was found
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Scheme 4

that the energy required to surmount TS-2 is prohibitively high (Table 1); thus, TS-1 was used in subsequent ab
initio calculations (vide infra).
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Table 1. Absolute and relative energies from semiempirical and ab initio calculations2

Computational Vinylidenecarbene  Cycloalkyne .
Method (Ta) (7b) 1s-1 T8-2
AM1 147.38758 153.94512 184.84403 236.24720
(kcal-mol1) ©) (6.6) (37.4) (88.8)
HF/3-21(G*) -458.71852 -458.68723 -458.67003

(total energies, 0 (19.6) (30.4)

in hartrees)

HF/6-31(G*)P -461.03539 -461.00537 -460.99899

(total energies, (V) (18.8) (22.8)

in hartrees)

aRelative energies(kcal-mol-1) for each series are in parentheses.
bThe zero-point energy contribution has been applied to these values.

The results of the comresponding ab initio calculations also are presented in Table 1. It should be noted that
the ab initio computational results indicate a much greater degree of instability for 7b relative to 7a than was
suggested by the corresponding AM1 computational results. The results obtained at the highest level of approxi-
mation used in our study [i. e., HF/6-31(G*), with the zero point vibrational energy correction applied] indicate
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that the rearrangement of 7a to 7b via TS-1 must traverse a kinetic barrier of 22.8 kcal-mol-! and is accompanied
by an enthalpic change of +18.8 kcal-mol-!.

Interestingly, the experimental and computational results presented herein contrast with the corresponding
results that have been reported for the cyclopentylidenecarbene-cyclohexyne equilibrium.” Thus, Johnson and
Daoust™ have calculated a modest energy barrier of ca. 11-24 kcal-mol-! for rearrangement of cyclopentylidene-
carbene to cyclohexyne; the predicted enthalpy change for this process is -14 to -17 kcal-mol-1. In contrast to this
result, we find carbene 7a to be preferred thermodynamiically vis-a-vis the corresponding cycloalkyne (7b).

Summary and Conclusions. A reactive intermediate was generated by treating 8-(dibromo-
methylene)pentacyclo[5.4.0.02:6.03:10 05.9Jundecane (6, Scheme 3) with n-BuLi-THF at low temperature. This
species, vinylidenecarbene 7a, could be trapped in situ by cyclohexene, thereby affording the corresponding
cycloadduct, 8. The same species, 7a, was produced via reaction of pentacyclo[5.4.0.02:6.03:10,059]undecan-8-
one (11)4 with DAMP.1¢.5 The results of semiempirical and ab initio calculations are consistent with our
observation that vinylidenecarbene 7a shows no tendency to rearrange to the corresponding cycloalkyne, 7b,
when generated under the conditions employed in this study. Additional calculations are underway in an effort to
improve our understanding of the factors that contribute to the relative stabilities of 7a and 7b.
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